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Abstract
Topographic change detection is increasingly being used to identify and monitor landslides and other geohazards in support

of risk-informed decision-making. Expanding change detection from site specific to regional scales enables increasingly proac-
tive asset management and contributes to improving the resilience of infrastructure to extreme events. It is widely known
that change detection precision can be improved by applying three-dimensional algorithms, such as iterative closest point (ICP)
and M3C2, directly to raw point clouds. However, this also increases the computational requirements compared to alternatives
such as digital elevation model differencing. This study presents a novel graphics processing unit (GPU)-based implementation
of the ICP-M3C2 workflow to address this limitation. In the proposed algorithm, point cloud data segments are automatically
queued and served to the working GPU, which efficiently performs point cloud processing operations, while the central pro-
cessing unit (CPU) performs data management operations in parallel. The developed method is estimated to be up to 54 times
faster than CPU-based versions of the same algorithm. In this study, we present how the workflow has been applied to six
regional-scale landslide identification and monitoring case studies in which landslides are causing the disruption of pipelines,
highways, and rail corridors. Overall, in 2021 and 2022, over 17 500 linear km of change detection were processed using the
demonstrated method.
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1. Introduction
Four-dimensional (4D) topographic change detection us-

ing three-dimensional (3D) data is increasingly being used to
identify, monitor, and respond to natural hazards, such as
rockfall, landslides, debris flows, floods, and earthquakes as
well as anthropogenic changes due to construction and re-
source extraction. Repeated topographic data collection and
comparison of these data facilitate a better understanding
of when and where changes have occurred or could occur,
which can be used to support risk-informed decision-making
by engineers, scientists, asset owners, governments, and the
public. Topographic change detection has played a key role
in reconnaissance and response following recent geotechni-
cal disasters, including the Oso landslide in Washington, USA
(Wartman et al. 2016; Lato et al. 2019), and the November
2021 atmospheric river event in southern British Columbia
(Hunter 2022; Vasquez 2022). Other recent examples include
identifying landslides from change detection for regional-
scale hazard mapping (Guzzetti et al. 2012; van Veen et al.
2017, 2022a), fault zone mapping (Nissen et al. 2014), coastal
cliff erosion studies (Westoby et al. 2020), and monitoring
landslide response to construction/mitigation activities (Lato
et al. 2016; Donati et al. 2020).

Topographic datasets covering large spatial extents are typ-
ically collected using fixed-wing aircraft, helicopters, or un-
crewed aerial vehicles (UAVs). These platforms are equipped
with lidar sensors or cameras for photogrammetry model
generation, each of which has its own unique set of advan-
tages and disadvantages (Passalacqua et al. 2015). For projects
with large spatial extents and vegetated ground, airborne
lidar can be deployed to capture high-resolution and high-
precision point data over hundreds or thousands of km2 of
land surface, while penetrating vegetation (Lato et al. 2015).
For smaller sites, such as a mining project, UAVs enable
datasets to be collected at high temporal frequencies (as often
as daily or weekly).

3D data have become increasingly better in terms of ac-
curacy and resolution (Pirotti et al. 2013; Harpold et al. 2015;
Niculiță et al. 2020). This has enabled the detection of smaller
changes, and in some cases, the ability to confidently iden-
tify precursors to large-scale movements (Kromer et al. 2015;
Lato et al. 2019). However, this also means that 4D data pro-
cessing is a time-consuming and computationally expensive
task (Schovanec et al. 2021). Typical computational meth-
ods for performing change detection (Fig. 1) include the
following:
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Fig. 1. Illustration of four types of change calculation. Digital elevation model (DEM) of difference (DoD, panel A) is shown
with change (d1) being the result of a vertical difference between grid cells. Cloud to cloud (C2C, panel B) change and cloud to
mesh (C2M, panel C) change are shown in the middle. Multiscale model to model cloud comparison (M3C2) (panel D) is shown
with the change direction calculated dynamically for each point based on the local normal vector. The change value (d4) is
computed as the difference in mean projected locations of the two point clouds along the cylinder axis. Graphic modified from
Winiwarter et al. (2021) under a Creative Commons BY 4.0 license.

� Digital elevation model (DEM) differencing, or difference of
DEMs (DoD), which measures changes in the vertical direc-
tion using gridded or interpolated versions of the datasets,
and where the grid size is selected by the user.

� Point-to-point or cloud-to-cloud (C2C) change, which finds
the distance between a point and its nearest neighbor in a
reference point cloud (Girardeau-Montaut et al. 2005).

� Point-to-plane or cloud-to-mesh (C2M) change in which a
point cloud is compared to a 3D meshed surface in a direc-
tion normal (i.e., perpendicular) to the mesh (e.g., Abellán
et al. 2009; Fei et al. 2023).

� Multiscale model to model cloud comparison (M3C2) in
which change is calculated in a direction normal to the lo-
cal surface using an average of nearby points (Lague et al.
2013).

DoD is a widely used technique in research and engineering
(Alotaibi et al. 2022; Conforti et al. 2021; Swirad and Young
2021; Tremblay-Auger et al. 2021). While the DoD method is
computationally efficient and straightforward to calculate, it
is subject to a variety of limitations. By gridding or interpolat-
ing data, DEMs introduce simplifications that limit the detail
of the surface. DEMs may interpolate over areas where there
are no data points present and therefore calculate a change
value where no data exist in the raw point cloud (Lague et
al. 2013). Further, change detection in the vertical direction
may reasonably represent some ground movement processes
(such as subsidence) but not others (such as some landslides,
lateral bank migration or erosion, rockfall, and mining exca-
vations) (Williams et al. 2021).

M3C2-like algorithms are often preferred for change de-
tection in geomorphology for several reasons (Stumpf et al.
2015; Smets et al. 2017; DiFrancesco et al. 2020; Williams
et al. 2021). First, change estimates that are orthogonal to
the local surface are more meaningful in steep and complex

topography than purely vertical change. For example, low-
angle topography will result in a near-vertical change direc-
tion, whereas vertical change computed on steep rock slopes
or incised riverbanks/canyons is not as informative as the
horizonal retreat distance. According to Lague et al. (2013), a
single change direction is not effective for datasets that con-
tain multiple environments or changing slope angles/aspects.
M3C2 and C2M automatically account for this and provide
meaningful change in both instances. Second, spatial av-
eraging of neighboring points results in the ability to de-
tect smaller changes with higher statistical confidence and
avoids unnecessary simplification in the gridding/meshing
step (Abellán et al. 2009; Kromer et al. 2015; Wagner et al.
2017).

While change along the local normal direction may be
preferable to DoD in some circumstances, neither DoD nor
M3C2 measure or attempt to measure the true displacement
vector of a given block or particle, which is often parallel to
the surface, not orthogonal. Many methods for determining
an appropriate change direction in complex topography have
been developed recently, and this is an active area of research,
but detailed interpretation of slope morphology is still re-
quired to infer true displacement when using these methods
(Gojcic et al. 2021; de Gélis et al. 2022; Weidner et al. 2021;
Williams et al. 2021;van Veen et al. 2022b; Zahs et al. 2022).

Change detection datasets must be finely co-registered to
each other, as any registration errors will have a direct ef-
fect on the ability to distinguish real changes in the data.
Here, several sources of uncertainty must be noted, includ-
ing the georeferencing, positioning, and classification errors
of both datasets (Passalacqua et al. 2015). For airborne lidar,
these combined uncertainties typically result in a best-case
limit of detectable change of several tens of centimeteres if
no registration is applied (Passalacqua et al. 2015; Okyay et
al. 2019), which can be problematic when the geomorphic
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Fig. 2. Map illustrating the approximate locations of study sites and an overview of the extent of regional-scale lidar change
detection (LCD) performed by the authors using the GPU method in 2021 and 2022. Pipeline and rail corridors associated with
these change detection projects are included for reference. The width of the green highlighted areas is enlarged to improve
visibility and is not reflective of the actual change detection area, which in most cases is much narrower, centered around the
infrastructure.

change of interest is of a similar magnitude (e.g., slow mov-
ing landslides, settlement, or erosion). Iterative closest point
(ICP) algorithms, which estimate the rigid best-fit 3D trans-
formation between two point clouds, are commonly used as
an error reduction technique (Girardeau-Montaut et al. 2005;
Guerin et al. 2017; Schovanec et al. 2021), effectively minimiz-
ing the network-scale georeferencing errors in the two point
clouds in regions where no change is presumed to have oc-
curred (e.g., flat ground, stable rock outcrops, roads, or build-
ings).

While the use of M3C2-like algorithms with ICP can lead
to gains in the precision of point cloud change detection,
they are computationally expensive and time consuming.
Recent research has demonstrated that graphics processing
units (GPUs) can be used to accelerate point cloud process-
ing by a factor of two or more compared to central process-
ing unit (CPU)-based processing. Problems such as shape de-
tection (Chaiso and Ratanaworabhan 2020), ground point ex-
traction (Baker and Sadowski 2013; Hu et al. 2013), and au-
tonomous collision avoidance (Kaldestad et al. 2014) have all
been explored using GPU acceleration. Anand et al. (2020)
compared GPU- and CPU-based point cloud processing hard-

ware and found a sixfold increase in speed by using a GPU
for computation. This shows great opportunities for rapid
point cloud processing, but to date, there have been very few
published applications of GPUs for change computation from
point clouds and none for geomorphic change with M3C2.
Richter et al. (2013) developed a GPU-based change detection
and visual rendering algorithm, but the implemented change
method was C2C, not the more robust M3C2 method.

The objectives of this study are to (1) provide a benchmark
of the precision of the M3C2-ICP workflow in comparison to
DoD and (2) operationally apply a GPU-based M3C2-ICP work-
flow to manage landslide risks over large areas. We intend
to demonstrate that automated processing enables analysis
that was hitherto impractical or impossible to perform at a
regional scale (e.g., a pipeline network, rail or highway corri-
dor, hydro reservoir shoreline, or mine site).

2. Data and study sites
Data from six different geohazard sites have been used for

this study. The six sites are located across North America in
different physiographic and geological settings (Fig. 2). While
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Table 1. Bare-earth point cloud resolutions for datasets used in this study.

Site No. Year Average point spacing (m) No. of points Overlap plan area (km2)

1
2006 0.72 6 188 121

2.1
2019 0.11 37 299 641

2
2019 0.17 47 347 684

1.3
2020 0.17 20 793 558

3
2006 0.46 6 750 676

3.4
2016 0.25 30 061 638

4
2015 0.33 9 019 258

3.3
2017 0.30 9 876 812

5
2006 1.83 7 423 972

15.2
2013 0.43 19 936 492

6
2015 0.19 2 437 691 890

420
2021 0.18 3 547 598 001

the test locations used here are relatively small (a few square
kilometeres), they are part of much larger change detection
campaigns consisting of thousands of square kilometeres, as
illustrated by the green highlighted areas in Fig. 2. The total
length of infrastructure corridor change detection processed
using our method in 2021 and 2022 is conservatively esti-
mated at 17 500 km.

Site 1 is a pipeline slope crossing located in southern
Alberta, Canada, where the buried infrastructure crosses a
slope on approach to a large valley, with landslide morphol-
ogy present. The slope is relatively shallow (10◦), and evidence
of both shallow and deep-seated landslides is present at this
site. An active landslide is present, and the interpreted mech-
anism is sliding on a weak glaciolacustrine clay layer at depth.

Site 2 is a location in eastern Kentucky, USA, where a buried
pipeline traverses the crest of a slope that comprises sedimen-
tary bedrock (sandstone and shale). This slope contains an
active landslide in bedrock within a gully-like feature. While
this landslide has not been characterized in detail, other land-
slides in this physiographic region typically occur as rela-
tively shallow, translational slides along a colluvium/bedrock
interface in interbedded sedimentary units. Similar to Site 1,
the slope at this location is shallow (10–12◦). This site is part of
an ongoing regional monitoring campaign across the eastern
United States in which three airborne lidar epochs collected
variously between 2006 and 2022 are compared over ∼14 000
linear km of pipeline corridor.

Site 3 is a landslide in the Fraser River valley in British
Columbia that is traversed by a highway and major railway
line. The active landslide is within the toe of a much larger
postglacial earth flow (which originated from volcanic sedi-
ments) and is sliding along a narrow shear zone at the base of
the earth flow deposit. This site is described in detail by Lato
et al. (2016).

Site 4 is located in the Assiniboine River Valley in Mani-
toba, where a railway traverses the valley slopes. The slopes
in this area are subject to slow-moving landslides in clay-shale
bedrock, often on shallow (<10◦) slopes.

Site 5 is a river valley in western Washington, USA, at the
site of the 2014 Oso, Washington landslide, a high-mobility

landslide/debris avalanche in glacial and colluvial sediments
(Wartman et al. 2016). The North Fork Stillaguamish Valley
has been previously investigated in detail to understand its
history of landslide activities (Iverson et al. 2015; LaHusen
et al. 2016; Lato et al. 2019). In this region, the Washington
Department of Natural Resources has made multiple over-
lapping vintages of aerial lidar data publicly available on
the Washington Lidar Portal (lidarportal.dnr.wa.gov). For this
study, we downloaded ∼20 km2 of data in the Oso, Washing-
ton area for the 2006 and 2013 data epochs.

Site 6 consists of a 236 km linear section of transporta-
tion corridor in southern British Columbia. The corridor is
affected by a variety of geohazards, including landslides, de-
bris flows, dry granular flows, rockfalls, and erosion, due to
being situated in a steep river valley. This site was included
primarily to test the capacity of our system to efficiently pro-
cess large amounts of data in a single batch.

For each of the six sites, two datasets have been selected
for demonstration in this study, as summarized in Table 1.
We refer to the older dataset in a change detection analysis
as the “reference”, or baseline cloud, and the newer dataset
as the “data”, or comparison cloud. In the case of these sites,
data collection was contracted out for the specific projects, or
purchased from an “off-the-shelf” provider, in the case of the
2006 data at Site 3. Data for Site 5 were downloaded from the
Washington Department of Natural Resources lidar data por-
tal. The data resolution ranges from an average point spacing
of 0.72 m in the worst case (at Site 1) to 0.11 m in the best
case (also at Site 1). It should be noted that the 2019 data at
Site 1 were collected using a lidar sensor mounted on a UAV,
whereas the rest of the data were collected using a fixed-wing
or helicopter-mounted sensor.

3. Methods

3.1. Proposed change detection workflow
The algorithms we have developed input a set of two point

clouds from multiple epochs, and output calculated changes
over time for each point in the newer input dataset. This
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Fig. 3. Diagram showing the steps of the processing work-
flow.

is accomplished through four main steps, as summarized in
Fig. 3:

� Data pre-processing and segmentation
� Alignment using ICP (Section 3.1.1)
� Change calculation using M3C2 (Section 3.1.2)
� Post-processing and interpretation

Pre-processing typically includes converting raw data into
the appropriate file formats, confirming data units and pro-
jection, and splitting the data into sections for batch process-
ing. For large areas, data are split into segments of moderate
size (less than 100 million points) to ensure that the clouds
can be loaded into GPU memory. Splitting the data into seg-
ments before performing the ICP also helps to improve the lo-
cal alignment within each section, rather than trying to align
a few very large areas. Segments can be created manually by
drawing polygons for each segment, which avoids having tile
seams passing through important features, or automatically
by creating square segments with a pre-defined size. The seg-
ment creation process is currently based on heuristics devel-
oped through experience, and as such there is a significant
need for further work to define best practices.

Post-processing consists of rasterizing the resultant point
clouds, merging the rasters into a single file, and uploading
the layer to a custom web-viewer for interactive interpreta-
tion and interrogation.

3.1.1. ICP alignment

ICP alignment is used to ensure that the reference and data
clouds are as closely aligned to each other as reasonably pos-
sible (Besl and McKay 1992). This maximizes the ability to
detect real changes between two datasets. While the point

clouds are assumed to have some level of initial correspon-
dence due to both being georeferenced, the georeferencing
quality may not be high enough to allow direct point cloud
comparison at high-precision levels. This typically presents
itself as a systematic “shift” or offset in one point cloud rela-
tive to the other. ICP alignment can be used to resolve these
inconsistencies and increase the precision of change detec-
tion results. The steps of the ICP alignment are described in
Algorithm 1.

Algorithm 1. Summary of the ICP implementation used in
this study.

DO:

1. Compute point cloud densities and downsample the higher
density cloud
2. Compute normal vector for each point in the reference
cloud based on local plane fitting

While: Convergence criteria not met

3. Find point-to-plane nearest neighbor correspondences
4. Estimate and apply a rigid geometric transformation
5. Check if any convergence criterion has been met

END While
END DO

6. Return convergence results, move on to change calculation

This algorithm is based on the ICP implementation avail-
able in the Point Cloud Library (PCL; Rusu and Cousins 2011),
with some modifications as described below.

In Step 1, the densities of the reference and data point
clouds are estimated, and the higher density point cloud is
downsampled using a voxel grid to be of a similar resolution
to the lower density point cloud. Density is estimated as the
average nearest-neighbor distances for 10 000 randomly sam-
pled points. In our implementation, this downsampling pro-
cess was observed to result in faster convergence and more
reliable alignment results. Note that downsampling is only
applied for the ICP process and is not carried forward to
change calculation, where the full resolution point clouds are
used.

In Step 2, normal vectors are computed for each point in
the reference cloud by fitting a plane to a small spherical
neighborhood of points. Normal vectors are needed for the
point-to-plane distance metric used in Step 3. The neighbor-
hood radius is computed automatically as three times the
point spacing of the less dense cloud, or 1.5 m, whichever is
larger. This value of the neighborhood radius was estimated
empirically based on extensive testing on airborne laser scan-
ning datasets. As such, the value would need to be adjusted
based on user judgement if UAV or terrestrial-based datasets
are used.

Steps 3 through 5 represent the core of the ICP algorithm
in which the data point cloud is iteratively transformed un-
til one of several convergence criteria is met (Fig. 4). First,
a point-to-plane distance metric is used to find the nearest
corresponding points between the two clouds (Step 3). After
the initial correspondences are found, a percentile filter is
applied such that the smallest 70% of the distance pairs are
kept. This is done to ensure that outlier points and points cor-
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Fig. 4. Illustration of iterative closest point (ICP) correspondence matching based on point-to-plane distance. Green arrows
represent kept correspondences, while the orange arrows are a rejected correspondence as they have the largest distance.

responding to large real changes on the slope are not used to
estimate the geometric transformation.

Next, a least-squares geometric transform is calculated and
applied (Arun et al. 1987). Finally, the convergence criteria
are checked to see if the procedure should be stopped or con-
tinued iterating. We use the default convergence criteria set-
tings in PCL.

3.1.2. M3C2 algorithm

M3C2 was introduced by Lague et al. (2013) to overcome the
limitations of other point-cloud-based change detection algo-
rithms. M3C2 operates in two main steps: (1) normal vector
estimation for each point based on a set radius (RN) of neigh-
borhood points and (2) distance calculation along the normal
vector direction. Points are collected from both data and ref-
erence clouds in a cylinder with a set length (LC), an axis along
the normal vector, and a set radius (RC). Then, these points are
projected along the cylinder axis, and the distance between
the mean projected point locations for the two clouds is cal-
culated. The main benefit of this approach is that by setting
the radius parameters RN and RC appropriately, change can be
calculated directly from the raw point clouds while also be-
ing robust to surface roughness arising from noisy data and
complex natural environments.

The M3C2 algorithm requires three main parameters: nor-
mal radius (RN), cylinder radius (RC), and the cylinder length
(LC). By default, the cylinder length is set to 20 m in both for-
ward and reverse normal directions from the core point. We
use a normal radius of six times the average point spacing of
the less dense point cloud (either the data or the reference
clouds), or 3 m, whichever is larger. Similarly, the cylinder
radius is set to the greater of three times the average point

spacing of the less dense cloud or 1.5 m. Thus, in our imple-
mentation, RN = 2(RC) such that the normal direction over
flat ground is consistent and smooth.

The selection of the normal and cylinder radii is based
on user judgement because while increasing the cylinder ra-
dius improves confidence in change results, it also increases
the “smoothness” of change and could average out changes
with a small spatial extent, such as rockfalls. A theoretical
minimum radius that is equal to the point spacing is rec-
ommended to ensure that at least one point is captured in
the search cylinder (Lague et al. 2013; DiFrancesco et al.
2020). This value is typical for terrestrial lidar and fine-scale
rock slope analysis, but we opt to use values larger than
this minimum based on the observation that typical land-
slides in aerial data are much larger than the point spacing,
and higher confidence in change is desirable for detecting
small amounts of movement over extensive areas. The cylin-
der length is selected to be larger than the maximum amount
of expected change between two dates. A value of 20 m was
found to be appropriate for most circumstances, with active
mine sites a notable exception.

3.1.3. GPU implementation

We implemented the point cloud processing steps de-
scribed above on GPU hardware to improve their speed.
Point cloud processing requires the identification of vari-
ous neighborhoods of points for plane estimation, locating
ICP correspondences, and computing M3C2 distances within
the search volume. K-dimensional (KD) tree and octree algo-
rithms are commonly used to perform fast nearest neigh-
bor searches on point clouds, and these are now commonly
implemented on GPUs (Girardeau-Montaut et al. 2005; Zhou
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et al. 2008; Richter et al. 2013). Tree algorithms enable ef-
ficient searches through arbitrary 3D space and are widely
used for computer graphics applications, but there is some
computational cost associated with the initial generation of
the search tree structure. In addition to implementing M3C2
on a GPU, the two major differences of our approach from
previous algorithms are summarized as follows:

1. Nearest neighbor searches are conducted using a two-
dimensional grid generated for each search query.

2. The entire point cloud is loaded in GPU memory and na-
tive platform application programming interfaces (APIs),
and GPU compute shaders are used to control all aspects
of GPU core operations (as opposed to Nvidia CUDA, for
example).

3.1.4. GPU-based neighborhood searches

Because geohazard mapping deals primarily with data col-
lected aerially over large areas, the overall structure of the
point cloud can be considered planar on average. As such,
we opt to create uniform, horizontal, non-recursive grids to
subdivide point clouds for neighborhood searches, instead of
spending more computing resources creating a KD tree or oc-
tree structure for the entire cloud. The grids generated using
this method are two dimensional (i.e., they extend infinitely
in the Z direction) and are generated on-the-fly using a grid
cell size that is dependent on the size of the neighborhood
search needing to be performed. For spherical neighborhood
searches, the grid side length is equal to the diameter of the
sphere. For M3C2 cylinder searches, the side length is com-
puted such that it contains the horizontal projection of the
entire cylinder. Because the grid is generated for each search
and is necessarily larger than the desired neighborhood, all
points belonging to the neighborhood will be correctly iden-
tified in a single grid cell (i.e., no points will be missed). For
example, if a GPU core needs to perform a spherical neighbor-
hood search to estimate the normal vector, a grid is created
centered on the query point, the returned points within the
grid cell are sent to the GPU core, and then points outside the
search sphere radius are rejected.

The use of an optimized grid search method entails that
the entire point cloud segment is loaded into GPU memory.
To enable more control of the data layout and data transfer
to and from GPU memory, we used low-level graphics APIs,
specifically Direct3D for Windows and Metal for iOS, to per-
form all calculations on GPU cores. As such, our implemen-
tation is not tied to specific hardware and can be deployed
to multiple devices, including smartphones (Lato and Ferrier
2022).

3.2. Comparison tests
We performed a set of four experiments for each site to

quantify the improvement in change precision obtained by
using ICP-M3C2. Specifically, we compared M3C2 change cal-
culation with DoD, and we compared applying or not apply-
ing ICP alignment. These options result in four possible con-
figurations, as illustrated in Fig. 5.

Fig. 5. Schematic showing the four combinations of analysis
steps performed in this study. Tests are assembled based on
two different change detection methods (DoD and M3C2) and
the presence or absence of the ICP alignment.

The DoD analysis consists of two main steps: conversion of
the reference and data point clouds into a raster format and
vertical subtraction of these two datasets in a regular grid. We
performed these steps using Global Mapper (Blue Marble Ge-
ographics 2020). First, the raw point clouds are converted to
triangulated irregular networks (TINs). There are many alter-
natives for creating a DEM from raw points, including var-
ious deterministic and probabilistic interpolation methods
and gridding options, and there is not necessarily a single
method which is expected to work best in all environments
(Fisher and Tate 2006; Chen et al. 2017). We use TINs for DEM
creation primarily because of their high efficiency, which is
important when processing hundreds of square kilometeres
of data, and because they are a commonly used approach in
commercial software and are therefore useful for compari-
son. The TINs are then used to populate the raster DEM at
a small cell size (less than 0.2 m) estimated by Global Map-
per. A grid of resolution 0.5 m is then placed over the two
DEMs, and the reference DEM elevation is subtracted from
the data DEM elevation at each grid cell. A 0.5 m grid size rep-
resents a standard DEM size for high-resolution aerial lidar. A
grid resolution of 0.1 m was also tested to check whether grid
size would influence the comparison with point-cloud-based
change, but the change statistics were substantially similar,
so a 0.5 m grid was used to manage file size.

3.2.1. Speed comparison

To compare CPU- and GPU-based M3C2 computation, we
ran non-ICP change detection using both our GPU imple-
mentation and the implementation provided in the open-
source CloudCompare software (cloudcompare.org). The self-
reported change computation times for both methods were
recorded in milliseconds (both methods print the change de-
tection time to the console). Our GPU method timing includes
both the raw GPU computation time and the GPU “prologue”
which consists primarily of copying data from CPU memory
to GPU memory. The CloudCompare implementation was pa-
rameterized to make it comparable to our software: Normal

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

B
G

C
 E

N
G

IN
E

E
R

IN
G

 L
IB

R
A

R
Y

 o
n 

03
/0

7/
24

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cgj-2023-0073


Canadian Science Publishing

8 Can. Geotech. J. 00: 1–19 (2024) | dx.doi.org/10.1139/cgj-2023-0073

vectors and change were calculated using a fixed search ra-
dius of the same size as used in the GPU version, and the cylin-
der length was set to the same fixed length of 20 m in both
tests. The option in CloudCompare to perform a progressive
cylinder search, which extends the cylinder until a certain
number of points are found, was disabled to be comparable
to our implementation. These tests were performed on two
different computer systems to evaluate the potential differ-
ences in the speed observed with different computer hard-
ware. Computer 1 had a Nvidia Quadro RTX 5000 graphics
cards (16 GB dedicated memory) and a 16 core, 32 thread Intel
Xeon Gold 6226R CPU. Computer 2 had a Nvidia RTX A5000
graphics card (24 GB dedicated memory) and a 24 core, 48
thread AMD Ryzen Threadripper PRO 5965WX CPU.

Speed measurements were recorded for DoD and ICP steps
on Computer 1 to provide additional context for the results of
this study. DoD was computed as described above in Section
3.2 using Global Mapper. DoD times are meant to represent
a typical example of what can be expected using common
commercial software. We also timed individual runs of ICP
for sites 1 through 5 as an estimate of the typical alignment
runtime. However, we note that our ICP implementation runs
with multiple tiles in parallel, and the time taken is highly
dependent on the initial positions of the point clouds and
how long they take to reach convergence.

A final speed test was performed on Computer 2 to
demonstrate the combined system, which included data read-
ing/writing, ICP alignment, and normal vector computation,
M3C2 distance computation, and the rasterization of the out-
puts for convenient viewing in a web-based map. Site 6 was
used for this comparison, as mentioned in Section 2, with
a total combined number of points of 5.99 billion. The data
were first divided into 562 segments and placed into sepa-
rate folders for the baseline and comparison datasets. The
ICP-M3C2 software was run, which loaded segment base-
line/comparison pairs, estimated the point density, computed
the ICP alignment and recorded the convergence result, per-
formed M3C2 comparison, and wrote the output files to the
specified folder.

3.3. Limit of detection
Assessing the confidence bounds of change is an impor-

tant step in using change detection for earth science applica-
tions. For example, uncertainty assessment has a major im-
pact on volume calculations (Wheaton et al. 2010) and can
influence the detectability of slow-moving landslides (Lato et
al. 2019). Assessment of change confidence and error is com-
monly reported as a limit (or level) of detection (LoD), analo-
gous to a 95% “confidence” interval (z = 1.96). Many authors
estimate LoD as twice the standard deviation of change com-
puted in regions assumed to be unchanged (Abellán et al.
2009; Kromer et al. 2017; Williams et al. 2018). If a change
value is within the 95% confidence interval (e.g., LoD95% =
±0.05 m), it is not considered for volume calculation or as-
sessment of geomorphic processes. Several different methods
have been proposed to estimate LoD95%, including different
statistical tests, the inclusion of spatial variations in uncer-
tainty, and error propagation of multiple datasets (Joerg et

al. 2012; Lague et al. 2013; Winiwarter et al. 2021; Zahs et al.
2022).

In this study, we estimate a preliminary LoD by comput-
ing change statistics (mean, standard deviation, 2.5th and
97.5th percentiles) in a manually selected small region of
each site which is morphologically similar (e.g., in terms of
slope and curvature) to the changing area, but is away from
areas of known or suspected change. The summary statistics
are used to select a threshold for visualizing change results,
where change values below the threshold are completely
gray/transparent to the underlying hillshade. While the un-
derlying statistics are functions of the raw data, the threshold
chosen for visualization is not strictly data-driven and may in
practice be chosen to be more conservative (i.e., a larger limit
of detection and larger changes filtered) based on a worst-case
scenario or the largest of multiple estimates. In this study, the
thresholds were chosen to generally encompass the 2.5th and
97.5th percentiles of the data, while also highlighting visual
differences in appearance between the different test results.

4. Results

4.1. Change statistics
Topographic change was computed for the datasets and

analysis methods described in Sections 2 and 3, and the
results are compared quantitatively using histograms and
change statistics in Fig. 6 and Table 2.

Histograms in Fig. 6 illustrate the differences in change
values obtained using DoD, M3C2, DoD with ICP alignment,
and M3C2 with ICP alignment. The following two observa-
tions can be made for every site: (1) M3C2 has a smaller dif-
ference between the 2.5th and 97.5th percentiles than DoD
(and corresponding smaller standard deviations) and (2) ICP
generally, but not always, shifts the mean of the distribution
closer to zero. Further, for the sites at which steeper slopes
were used to calculate statistics (panels B and C in Fig. 6), a
change in the shape of the distribution was observed depend-
ing on whether ICP was used or not. For example, the non-ICP
M3C2 distribution at Site 2 (panel B, yellow curve) has two dis-
tinct peaks, but once ICP is applied, only a single high-density
peak is observed. A similar pattern can be observed at Site 3
(panel C).

4.2. Visual interpretation of change maps
Change maps of results for five sites and four analysis

methods are presented in Figs. 7 through 11. Areas of nega-
tive model differences (material loss, subsidence, erosion, or
removal) are colored light to dark blue, while areas of positive
model differences (material accumulation, bulging, or place-
ment) are colored yellow to red. No color is shown if changes
are less than the LoD95%.

Change maps for Site 1 are presented in Fig. 7. The map
highlights a series of recently active landslides along a road
and larger landslide to the southeast of the road. While the
headscarp of the larger landslide has dropped as much as 0.75
m in the analysis period, the toe of the landslide shows pos-
itive displacement magnitudes of only between 0.1 and 0.2
m, which is of a similar magnitude to the initial georeferenc-
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Fig. 6. Comparison of histograms of change calculated for each of the five sites (panels A through E) and four analysis meth-
ods (different colored lines). Colored and dashed vertical lines indicate the 2.5th and 97.5th percentiles for each histogram.
Statistics are calculated in an area of each point cloud where no geomorphic change was observed or interpreted.

ing error between the two component datasets. Georeferenc-
ing error results in a larger LoD95% for this comparison, and
as a result, changes calculated with non-ICP aligned datasets
are unable to resolve the toe of the landslide. The identifi-
cation of distinct movement at both the scarp and toe of the
landslide suggests the existence of a deeper rotational failure

than would be clear if movement was only measurable at the
scarp.

A similar situation occurs at Site 4 (Fig. 8), where the appli-
cation of ICP changes both the magnitude and distribution
of movement observed in this valley-scale landslide. In con-
trast to Site 1, however, the application of ICP shifts empha-
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Table 2. Percentile change statistics for the four analysis types and five regions of interest.

Site Test Mean SD P 2.5% P 97.5% Range∗ Change threshold for visualization

1

DoD-ICP 0.04 0.05 −0.05 0.13 0.18 ±0.10

DOD −0.14 0.04 −0.22 −0.06 0.17 ±0.30

M3C2-ICP 0.03 0.02 −0.02 0.08 0.10 ±0.10

M3C2 −0.13 0.03 −0.18 −0.08 0.10 ±0.30

2

DoD-ICP 0.00 0.03 −0.05 0.07 0.12 −0.05 to + 0.10

DOD 0.04 0.04 −0.04 0.12 0.16 −0.05 to + 0.15

M3C2-ICP 0.00 0.02 −0.03 0.04 0.07 −0.05 to + 0.10

M3C2 0.04 0.03 −0.02 0.09 0.11 −0.05 to + 0.10

3

DoD-ICP −0.02 0.16 −0.31 0.28 0.59 ±0.30

DOD 0.11 0.31 −0.45 0.77 1.22 −0.50 to + 0.80

M3C2-ICP −0.01 0.12 −0.23 0.22 0.45 ±0.30

M3C2 0.11 0.25 −0.34 0.63 0.97 −0.40 to + 0.70

4

DoD-ICP 0.00 0.08 −0.13 0.20 0.33 ±0.15

DOD 0.03 0.09 −0.12 0.25 0.37 ±0.15

M3C2-ICP −0.01 0.06 −0.11 0.15 0.25 ±0.15

M3C2 0.01 0.07 −0.10 0.19 0.29 ±0.15

5

DoD-ICP 0.12 0.36 −0.47 0.97 1.44 ±0.90

DOD 0.10 0.36 −0.50 0.95 1.44 ±0.90

M3C2-ICP 0.07 0.23 −0.35 0.51 0.86 ±0.90

M3C2 0.05 0.23 −0.38 0.49 0.86 ±0.90

Note: All values are reported in meters; Statistics are calculated in an area of each point cloud where no geomorphic change was observed or interpreted. Bold values
indicate the method with the lowest standard deviation and range for each site.
∗Range is calculated as the difference between the 97.5th and 2.5th percentiles.

sis away from the toe of the landslide and toward the scarp,
suggesting larger amounts of subsidence at the railroad grade
and lower magnitudes of change at the toe. This is a situation
where lower magnitudes of change may be an indication of
predominantly translational movement which is parallel to
the slope and therefore not able to be detected with an or-
thogonal change direction.

Differences between DoD and M3C2 change calculation
methods are highlighted in Fig. 9, where an existing land-
slide shows recent movement. The DoD results are notice-
ably more speckled in appearance compared with M3C2 re-
sults with the same LoD95%. A second difference is that DoD
is susceptible to artifacts in regions of steep topography: a
sub-vertical scarp at the head of the landslide is reported as
having moved upward (positive change) by more than 1.0 m
in the DoD results, but the artifact is significantly reduced in
the M3C2 results.

Figure 10 highlights a case where georeferencing error be-
tween the two original datasets was sometimes greater than
0.6 m, resulting in a relatively poor (higher) limit of detection.
With the inclusion of ICP, change values above the main land-
slide become centered around zero and have a much smaller
range compared to non-ICP DoD and M3C2. While the main
landslide area appears visually similar in all four methods
due to the large change magnitudes relative to the LoD95%,
ICP alignment revealed 0.5–1.0 m of settlement in the rail-
road right of way that was within the limit of detection in
non-ICP methods.

Figure 11 illustrates change detection results for Site 5
(Oso, Washington) between 2006 and 2013, prior to the catas-

trophic 2014 landslide. The error histograms for this site (Fig.
6, panel E) suggest that the baseline and comparison datasets
were already closely aligned to each other relative to the over-
all error, and therefore the effect of ICP on results interpreta-
tion is minimal. The detail panels in Fig. 11 highlight differ-
ences between DoD and M3C2 results. The amount of speck-
led noise on steep slopes is markedly reduced in M3C2 com-
pared to DoD, allowing for more confident and rapid identi-
fication of areas of erosion and deposition on the cliff face.

4.3. Speed comparison of CPU and GPU change
calculation

CPU- and GPU-based M3C2 computation times for both test
machines are compared in Table 3. The “speed-up factor” is
the ratio of the compute times from CloudCompare to the
GPU method. Note that the improvement in speed is depen-
dent whether the “GPU prologue” is included in the total GPU
compute time or not. Because the GPU prologue consists pri-
marily of transferring point cloud data from the CPU to the
GPU, it can be argued that a fair comparison of the GPU and
CPU methods would not include the GPU prologue. However,
a CPU-based method would not need to perform this data
transfer. Consequently, we have reported speed-up factors for
both including and excluding the GPU data transfer time. The
speed-up factors varied for different sites and between the
two computer systems. Speed-up factors for Computer 2 were
relatively lower than for Computer 1, meaning that the rel-
ative processing capabilities of the CPU method were higher
for Computer 2. This is consistent with expectations, since
the CPU in Computer 2 had 16 more threads than the CPU in
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Fig. 7. Change maps for Site 1, with each panel corresponding to a change calculation method. Change values above the LoD95%

are overlain on a hillshade rendering of the more recent DEM. LoD95% values in the panel titles indicate the level of change
below which change values are not shown. Red circled area highlights the toe of an active landslide which is only identifiable
when ICP is applied. Dashed black box indicates region used for the calculation of the limit of detection.

Computer 1, meaning that more parallel operations could be
performed. Despite this, the GPU method compute time was
still 9–46 times faster than the CPU.

Analysis of dataset characteristics with the speed results
in Table 3 suggests a relationship between point density and
computation time. Figure 12 illustrates the relationship ob-
served between the point density of the comparison dataset
and the M3C2 compute time, normalized by the aerial extend
of the data (Tables 1 and 3). As indicated by the log-linear
best-fit lines, the GPU method appears to be much less sen-
sitive to point density compared to the CPU method. While
this does indicate some influence of density on computation
time, we note that several other factors likely play a role, in-
cluding the density of the baseline cloud, the M3C2 search
radii, and the steepness/classification quality of the terrain.
The datasets used in this study were similar to each other but
not identical in terms of number of points and search radii.

The large-scale speed test using Site 6 was also completed.
The total time to complete all processing steps for 5.99 bil-
lion points, including ICP, change computation, reading, and
writing, was ∼3.2 h, or ∼20 s/segment. Approximately 15 min

of this time required user intervention for copying files and
setting up the initial parameters, and the rest was running
automatically in the background.

4.4. DoD and ICP speed
This section describes the results of the DoD and ICP speed

tests, as presented in Table 4. For reference, we include both
time taken to perform the gridding overlay and raster sub-
traction (differencing) and the initial creation of the TIN from
the raw point cloud. In comparison to M3C2 (Table 3), the
subtraction step of DoD was measured to be faster than the
CPU change computation in most cases but slower than GPU
change computation. We do not interpret this to suggest that
GPU-M3C2 is faster than DoD in general, as we cannot con-
firm that Global Mapper is optimized similarly to CloudCom-
pare and GPU-M3C2. Based on the number of computations
required for each method, it is presumed that a GPU-based
DoD computation would outperform M3C2, for example, but
this is beyond the scope of the current study. However, these
results suggest GPU acceleration may be useful for closing the
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Fig. 8. Change maps for the Site 4, with each panel corresponding to a change calculation method. Change values above the
LoD95% are overlain on a hillshade rendering of the more recent digital elevation model (DEM). LoD95% values in the panel titles
indicate the level of change below which change values are not shown. Black dashed box indicates region used to calculate
the limit of detection (region extends ∼100 m to the north). DoD methods are not shown due to their visual similarity to the
M3C2 results and to enlarge individual panels but are included in Fig. S1.

gap in speed between point-based and raster-based analysis
methods.

5. Discussion

5.1. Comparison of DoD and M3C2
The results presented in this study highlight several limita-

tions of the DoD method compared to direct point cloud com-

putation with spatial averaging. First, DoD computes change
at grid nodes at a resolution that is necessarily less than the
native point resolution, but M3C2 computes change based
on an average of neighborhood raw points. In our tests, this
resulted in an improvement (lowering) of the limit of detec-
tion, without reducing the resolution of results (see Fig. 6 and
Table 2). In practice, simple DoD results could be “enhanced”
by applying smoothing based on a neighborhood of grid cells
(Abellán et al. 2009), but this neighborhood search would be
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Fig. 9. Change maps for Site 2, with each panel corresponding to a change calculation method. Change values above the
LoD95% are overlain on a hillshade rendering of the more recent digital elevation model (DEM). LoD95% values in the panel titles
indicate the level of change below which change values are not shown. Black circled area highlights an artifact in difference
of DEM (DoD) change results caused by steep topography. Black dashed box indicates regions used to calculate the limit of
detection.

based on 2D proximity and would not preserve change in
steep slopes.

The practical differences between DoD and M3C2 results
depend on the precision and overall quality of the input
datasets. It is well known that in complex topography, DoD
is unlikely to accurately represent 3D geohazard processes
and that change in the orthogonal direction is more rele-
vant (Lague et al. 2013; DiFrancesco et al. 2020; Williams et
al. 2021). In our experience, the improvements (reduction)
in the limit of detection afforded by M3C2 also enables de-
tection of subtler landslide movements (<15 cm) with higher
confidence due to the reduction in ambient noise. However,
if the quality and precision of both baseline and comparison
datasets are high, and only large changes are of interest, it
is possible that the improvement in limit of detection will
have a relatively small impact on interpretation of geohaz-
ard processes and risks. Similarly for change direction, if the
topography of interest consists of only relatively smooth, low-
angle surfaces, the change direction computed using normal-
vector-based M3C2 would be relatively close to vertical. Gen-
erally, we are interested in environments prone to geohaz-
ards, which are more likely to have complex topography and
datasets of variable quality.

5.2. Use of ICP for error reduction in airborne
lidar

This study also highlights the added value of ICP in re-
ducing errors in airborne lidar change detection. However,
several assumptions are made when applying ICP over such
large scales, and these assumptions must be checked regu-
larly. First, ICP assumes that the two point clouds being com-
pared are already approximately aligned to each other, an
assumption that often cannot be made for terrestrial lidar,
for example (Schovanec et al. 2021). Without the pre-existing
approximate alignment, ICP would be much more likely to
converge to a “local minimum” solution which is not near to
the actual optimal solution. In our experience, however, geo-
referencing errors are typically small enough to avoid this
except in rare cases.

ICP also assumes that areas that have changed in the analy-
sis period are small relative to the total size of the region of in-
terest. Large-scale changes, such as underground mining sub-
sidence, fault ruptures, open pit mining excavations, changes
in water level, or agricultural changes, all have the potential
to violate this assumption. In our experience, the 70% rejec-
tion criterion can overcome some of these situations, but oth-
ers continue to pose challenges.
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Fig. 10. Change maps for Site 3, with each panel corresponding to a change calculation method. Change values above the
LoD95% are overlain on a hillshade rendering of the more recent digital elevation model (DEM). LoD95% values in the panel titles
indicate the level of change below which change values are not shown. Dashed black box in the M3C2 panel indicates the
region of points used to calculate statistics in Fig. 6. Black arrow indicates the location of settlement and erosion identified in
panels B and D.

For example, the benefit of applying ICP versus no ICP is
somewhat ambiguous in the change detection results pre-
sented in Fig. 8. As observed in Fig. 6D, non-ICP histograms
are centered on zero, but once ICP is applied, the histograms
shift in a negative direction. This negative shift could be
caused by millimeter- to centimeter-scale subsidence occur-
ring along the entire slope length, but it could also be caused
by a change in the elevation from crop harvesting and tilling
in adjacent farmlands. Overall, the benefits of wide applica-
tion of ICP are clear, but the potential for occasional compli-
cations should be acknowledged.

5.3. Adoption of 3D point cloud processing in
engineering

The data presented in Fig. 12 imply that using the existing
CPU-based point cloud processing may not scale effectively as
data become increasingly dense and, more importantly, are
collected over larger areas. The GPU-based methodology pre-
sented here is a promising alternative in this case. Regard-

less of the specific hardware or software, however, develop-
ing more automated and efficient data processing workflows
in general would lower the barrier to entry to state-of-the-
art methods and would be more cost-effective for engineers
to use in practice. It is important to note that this does not
eliminate the need for experience and domain knowledge in
interpreting geomorphic change. Future engineers will need
to be trained specifically in the interpretation of point-cloud-
based change detection as it is a major departure from raster-
based methods.

6. Conclusion
Geohazards present major risks to critical linear infrastruc-

ture in North America, such as pipelines, roads, and rail net-
works. Recent high-profile disasters highlight the need for
engineers to take a proactive approach to manage these risks
over increasingly large areas, and high-precision lidar change
detection is an essential tool in this space. The 2021 British
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Fig. 11. Change maps for Site 5, with the upper panel (A) corresponding to the difference of DEM-iterative closest point (DoD-
ICP) method and the lower panel (B) corresponding to the multiscale model to model cloud comparison (M3C2)-ICP method.
Detail panels for each method highlight differences between DoD and M3C2 for a specific area. Non-ICP methods are not shown
due to the small influence of ICP at this site. Dashed box indicates the region used to calculate the limit of detection.

Table 3. Comparison of runtimes in seconds reported for calculation of change using M3C2. The CPU version is
run using CloudCompare, while the GPU version is run using our implementation.

Site number
GPU prologue

(s)
GPU compute

(s)
CPU
(s)

Speed-up factor
(with prologue)

Speed-up factor
(without prologue)

Computer 1

1 1.1 1.4 73.1 30 54

2 1.8 1.3 40.0 13 30

3 1.1 1.1 33.0 15 30

4 0.5 0.4 8.9 10 22

5 0.8 0.7 31.5 21 46

Computer 2

1 0.7 0.9 42.3 26 46

2 1.0 0.8 14.3 8 17

3 0.8 0.7 11.9 8 16

4 0.4 0.4 3.3 5 9

5 0.4 0.5 9.8 11 22

Columbia floods are a key example where rapid turn-around,
regional change detection provided immense value for disas-
ter response, recovery, and resilient redesign (Hunter 2022).
However, the geotechnical industry is lagging the state of the
art in change detection processing, resulting in the delivery

of lower precision, noisy data products which hamper inter-
pretation.

While M3C2-based change detection is gaining popular-
ity, our experience indicates that traditional non-ICP, raster-
based change detection is still widely used in practice (e.g.,
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Fig. 12. Comparison of point density and multiscale model to model cloud comparison (M3C2) compute time for central
processing unit (CPU) and graphics processing unit (GPU) methods for both computers. Compute times are normalized by the
plan area of each dataset to account for differences in the total compute time by dataset size.

Table 4. Speed results for the difference of DEM (DoD) in seconds using Computer 1.

Site
number

ICP
(s)

TIN creation,
cloud 1 (s)

TIN creation,
cloud 2 (s)

Differencing
(s)

1 117 17 254 5

2 547 219 134 8

3 365 20 140 6

4 167 34 34 9

5 128 19 58 26

Piovan et al. 2023). Our results demonstrate that the tools
now exist for the broader adoption of direct point-cloud-
based change detection processing and that this can be per-
formed at the regional scale. The major conclusions of this
study are summarized as follows:

� GPU-based algorithms show promise in accelerating change
calculation, with our results showing a speed-up factor of
up to 54× compared to a CPU-based algorithm. Continued
optimization of GPU algorithms in the future will likely im-
prove these speeds.

� M3C2 improves (reduces) the limit of detection, meaning
that smaller changes can be reliably detected, and it re-
duces artifacts compared to DoD, even in generally low-
gradient topography.

� ICP reduces systematic georeferencing errors when applied
at regional scales while also preserving many types of large
geomorphic and anthropogenic changes.

The results of this study have direct implications for quan-
titative risk management applications. First, applying more
robust computational methods means that one can have
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higher confidence in smaller amounts of geomorphic change,
which can lead to more informed decision-making. Sec-
ond, large-scale change detection enables decision makers to
make more proactive choices, discovering problems at an ear-
lier stage in their evolution.
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